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Harmonic Oscillator Coherent States
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a, and a_ are non-Hermitian operators
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Coherent State of the Quantum Harmonic Oscillator
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la) =C (v,bo(x) + \%wl(x) + \%wz(x) + \%wg(x) + )

a 1s an arbitrary complex number

C = e~12*/2 by normalization

: _lal? 4
The state can also be written as:  |a) = e~1%1°/2 g@d+ ()

This state is an eigenfunction of the annihilation operator d_|a) = a|a)

(ala_|a) = «a

(ala,d_|la) = |a|?> = (n) the mean number of excitations in the coherent state

The uncertainty in the number of particles: An = \/(n2) — (n)2 = ||
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Coherent states do not have a fixed number of particles. However — =— - 0inthe thermodynamic limit
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Coherent State of the Quantum Harmonic Oscillator

Statistical distribution of the occupation number (n) = |a|?
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Coherent state
0.10 The probability of detecting n photons, the photon number distribution,
: <m>= 252 of'a coherent state. As is necessary for a Poissonian distribution the
fg Var(n) = 25.3 mean photon number is equal to the variance of the photon number
0.05+

distribution. Bars refer to theory, dots to experimental values.
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Coherent State of the Quantum Harmonic Oscillator

If we write: @ = |a|e®® then,

|al |a|?
V1! V2!

Note that the same phase 8 appears in each term (coherent state),
as opposed to a randomly fluctuating phase in each term (incoherent state)

|“)=9_|a|2/2<¢0(x)+919 Y1 (x) + €29 —h,(x) + - )
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One can show that the 8-derivative 1s equivalent to the number operator: ~38 la) = |a)

1
Hence we can define: 1 = ~ @’ hence the number and phase of the wavefunction are conjugate variables

There is a resulting uncertainty relation: An A8 =

N | =

The coherent state |a) is a superposition of all possible occupation numbers, with An large, hence it must have A8 — 0
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