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Griffiths QM, 3rd edition

�𝑎𝑎+ and �𝑎𝑎− are non-Hermitian operators
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⟩|𝛼𝛼 = 𝐶𝐶 𝜓𝜓0 𝑥𝑥 +
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𝛼𝛼 is an arbitrary complex number

𝐶𝐶 = 𝑒𝑒− 𝛼𝛼 2/2 by normalization

⟩|𝛼𝛼 = 𝑒𝑒− 𝛼𝛼 2/2 𝑒𝑒𝛼𝛼 �𝑎𝑎+ ⟩|0The state can also be written as:

⟩�𝑎𝑎−|𝛼𝛼 = ⟩𝛼𝛼|𝛼𝛼This state is an eigenfunction of the annihilation operator

𝛼𝛼 �𝑎𝑎− 𝛼𝛼 = 𝛼𝛼

𝛼𝛼 �𝑎𝑎+ �𝑎𝑎− 𝛼𝛼 = |𝛼𝛼|2 = 𝑛𝑛 the mean number of excitations in the coherent state

The uncertainty in the number of particles: Δ𝑛𝑛 = 𝑛𝑛2 − 𝑛𝑛 2 = |𝛼𝛼|

Coherent states do not have a fixed number of particles.  However Δ𝑛𝑛
𝑛𝑛

= 1
𝑛𝑛
→ 0 in the thermodynamic limit 
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Statistical distribution of the occupation number 𝑛𝑛 = |𝛼𝛼|2

Poisson distribution

The probability of detecting n photons, the photon number distribution, 
of a coherent state. As is necessary for a Poissonian distribution the 
mean photon number is equal to the variance of the photon number 
distribution. Bars refer to theory, dots to experimental values.

https://en.wikipedia.org/wiki/Coherent_state

https://en.wikipedia.org/wiki/Poissonian_distribution
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Coherent_state
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If we write: 𝛼𝛼 = |𝛼𝛼|𝑒𝑒𝑖𝑖𝑖𝑖 then,

⟩|𝛼𝛼 = 𝑒𝑒− 𝛼𝛼 2/2 𝜓𝜓0 𝑥𝑥 + 𝑒𝑒𝑖𝑖𝑖𝑖
|𝛼𝛼|
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𝜓𝜓1 𝑥𝑥 + 𝑒𝑒𝑖𝑖2𝜃𝜃

|𝛼𝛼|2

2!
𝜓𝜓2 𝑥𝑥 + ⋯

Note that the same phase 𝜃𝜃 appears in each term (coherent state), 
as opposed to a randomly fluctuating phase in each term (incoherent state)

One can show that the 𝜃𝜃-derivative is equivalent to the number operator: 1
𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

⟩|𝛼𝛼 = �𝑛𝑛 ⟩|𝛼𝛼

Hence we can define: �𝑛𝑛 = 1
𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

, hence the number and phase of the wavefunction are conjugate variables

There is a resulting uncertainty relation: Δ𝑛𝑛 Δ𝜃𝜃 ≥ 1
2

The coherent state ⟩|𝛼𝛼 is a superposition of all possible occupation numbers, with Δ𝑛𝑛 large, hence it must have Δ𝜃𝜃 → 0
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